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The development and function of our brain are governed by a genetic blueprint, which reflects dynamic
changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-gener-
ation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with
a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both pro-
tein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in
brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological
and neuropsychiatric disorders, such as autism and schizophrenia.
All life forms develop, reproduce, and age based on their genetic

blueprint. The humangenetic blueprint iswritten in approximately

three billion base pairs (bp) and contains protein-coding genes

(estimated at 21,000 or fewer), RNA genes (e.g., microRNAs, pro-

moter-associated short RNAs, small nucleolar RNAs, and long

noncoding RNAs, which are estimated at 18,400), cis-regulatory

elements (including promoters and transcription factor binding

sites), long-range regulatory elements (namely, enhancers, re-

pressors/silencers, and insulators), and transposable elements

(ENCODE Project Consortium, 2011, 2012; Lander, 2011; Lander

et al., 2001; Pennisi, 2012).

The human genome changes over both short and long

timescales. Genetic changes that occurred as Homo sapiens

diverged from the common ancestor of primates are identifiable

as human-specific regions of the genome (Pollard et al., 2006).

Subtler genetic changes, especially relating to susceptibility

to infectious diseases, have occurred during human migration

out of Africa and settlement in certain geographical and biolog-

ical environments (Sabeti et al., 2007; Tishkoff et al., 2007).

Furthermore, genetic changes continue to occur, and can cause

disease, when inherited within a family as dominant (e.g., Hun-

tington’s disease) or recessive (e.g., microcephaly) alleles (Gil-

more and Walsh, 2013; Ross and Tabrizi, 2011). Most recently,

we have been discovering the extent to which genetic changes

that occur somatically, during the development and lifetime of

an individual, can affect the brain (Jamuar et al., 2014; Poduri

et al., 2013).

One may wish that the development and evolution of the hu-

man brain could be explained simply by a discrete set of hu-

man-specific genetic changes within the context of conserved

brain development among mammals, including mice. However,

there are many qualitative and quantitative differences in the

development of the cerebral cortex (neocortex) between humans

and mice (Geschwind and Rakic, 2013; Hill and Walsh, 2005),

and even our understanding of the development of the mouse

brain is far from complete. Nonetheless, there has been recent

progress in our understanding of human brain development

and evolution due to new methods and tools available in ge-

netics, genomics, and developmental biology (Table 1). Here,

we will review the present state of research on the genetic
changes affecting the development and evolution of the human

neocortex.

Identification of Evolutionarily Important Genomic
Regions by Comparisons between Species
One way to identify genetic changes that may have contributed

to the evolution of the human brain is to compare the human

genome to genomes of other species, both closely and distantly

related, and determine which genetic changes may be relevant.

Currently, genome sequences are available for archaic humans,

such as the Neanderthal (Green et al., 2010) and the Denisovan

(Reich et al., 2010), and for apes, such as the chimpanzee (Chim-

panzee Sequencing and Analysis Consortium, 2005), the ma-

caque (Gibbs et al., 2007), the orangutan (Locke et al., 2011),

the gorilla (Scally et al., 2012), and the bonobo (Prüfer et al.,

2012), as well as dozens of non-primate species.

However, mere comparison of the genomes fromdifferent spe-

cies is not sufficient to identify functionally relevant genetic

changes, as there are countless differences between the human

genome and the genomes of other species. For example, there

are nearly 20 million genomic loci that differ between humans

and chimpanzees. One important caveat here is that some of

the apparent differences between humans and non-humans

may simply reflect technical effects such as low sequencing

coverage and improper annotation of primate genomes com-

pared to the human genome. The currently annotated human

genome is a compilation of thousands of individual genomes.

Thus, intra-species population variability is well documented in

humans (Abecasis et al., 2012). In contrast, some of the archaic

human and primate genomes are based on a single individual.

Second, in most cases, the functional consequences of species

differences in sequence are unknown. Any genetic change has

the potential to elicit a robust phenotypic change, but it is nearly

impossible to predict which genetic change is relevant. Then, out

of 20 million or more candidates, where should we start?

One plausible starting point is to focus on the sequences that

are uniquely present, absent, or variable in the human genome,

as those sequences might contribute to unique features of the

human brain. A search based on protein basic local alignment

search tool (BLASTP) revealed a few de novo genes that are
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Table 1. Tools for Identification and Characterization of Genetic Changes Shaping the Human Brain

Tool Advantages Disadvantages

Whole-exome sequencing efficient sequencing of all the protein-coding

genes (�180,000 exons) in the human genome

unable to identify structural and noncoding variants,

although there are some tools to detect copy number

variations from exome data

Whole-genome sequencing sequencing of the entire genome of an individual the function of the majority of the human genome is

incompletely understood; thus, much sequencing data

are often difficult to interpret; also, whole-genome

sequencing is costly, at least for now

Single-cell sequencing genome and transcriptome sequencing of

individual cells detects cell-to-cell variability

requires amplification of the limited DNA and RNA in a

single cell, which can introduce errors

RNA sequencing reveals how each protein-coding gene or RNA

gene is utilized in a given cellular context

detection of genes with low expression levels is difficult;

multiple cell types can confound the interpretation

Chromosome

conformation capture

reveals chromosomal interactions influencing

gene expression, such as interaction between

an enhancer and a promoter of a protein-coding

gene

can be costly due to depth of sequencing needed,

depending on method; requires a great number of cells;

multiple cell types can generate noise and confound the

interpretation, although single-cell chromosome

conformation capture was recently developed

Clustered regularly interspaced

short palindromic repeats

(CRISPR)

genome editing by breaking the target DNA, which

introduces frameshift mutations via non-homologous

end joining or facilitates homologous recombination

off-target effects; efficiency in the brain awaits further

optimization

Multiple types of genome and transcriptome sequencing tools are available for identification of genetic changes that may contribute to human brain

development, evolution, and disease. Functional characterization of the genetic changes is expedited by CRISPR, a genome-editing tool.
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unique to the human genome (Knowles and McLysaght, 2009;

Wu et al., 2011). Interestingly, RNA sequencing (RNA-seq) data

indicate that these genes have their highest expression levels

in the neocortex and testes, although their functions have not

been systematically examined. Conversely, a systematic search

for human-specific deletions compared with other primate ge-

nomes identified 510 such deletions in humans that fall almost

exclusively in noncoding regions (McLean et al., 2011). One

such deletion removes a forebrain germinal zone enhancer

near the tumor suppressor gene growth arrest and DNA-dam-

age-inducible, gamma (GADD45G), suggesting a possible role

in the expansion of specific brain regions in humans. However,

a general consensus is that humans have a remarkably similar

number of protein-coding genes to model organisms such as

mice and worms and that most of the essential evolutionary

changes did not happen by simple gene addition or subtraction.

Another evolutionary approach has been to focus on genomic

loci that are well conserved throughout vertebrate evolution

but are strikingly different in humans; these regions have been

named ‘‘human accelerated regions (HARs)’’ (Bird et al., 2007;

Bush and Lahn, 2008; Pollard et al., 2006; Prabhakar et al.,

2008). So far, �2,700 HARs have been identified, again most

of them in noncoding regions: at least �250 of these HARs

seem to function as developmental enhancers in the brain (Capra

et al., 2013). One of them (HAR1) encodes a long noncoding RNA

(lncRNA) that is expressed specifically in Cajal-Retzius neurons

in the developing human neocortex. Cajal-Retzius neurons are

a heterogeneous population of cell types in the marginal zone

and layer 1 of the developing neocortex that produces reelin, a

large, secreted, extracellular matrix glycoprotein. Reelin controls

processes of neuronal migration and positioning in the devel-

oping neocortex, so the expression pattern of this HAR suggests

intriguing potential roles in regulating the shape or structure of

the cerebral cortex.
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The analysis of convergent evolution represents a third avenue

of comparative genomics that has been very powerful of late but

has not yet been explored in relation to the structure of the

neocortex per se. A particular phenotype can evolve inde-

pendently in species belonging to different lineages, creating

analogous structures that have similar form or function. An

evolutionarily convergent phenotype may be correlated with

similar genomic differences occurring independently in the two

lineages that evolved the same trait independently. Using this

approach, the genetic basis of vitamin C deficiency in certain pri-

mates including humans has recently been uncovered (Hiller

et al., 2012). Similarly, echolocation in bats and dolphins (Parker

et al., 2013), the electric organs (Gallant et al., 2014), the origin of

the nervous system (Moroz et al., 2014), and the domestication

of wild rabbits (Carneiro et al., 2014) have been studied. This

method may be very powerful in the future to apply to cerebral

cortical evolution as well.

Identification of Evolutionarily Important Genomic
Regions Using Human Genetics
The basic premise of human genetics is simple: where there is a

phenotype, there is likely to be an associated genetic (or epige-

netic) change. Identification of a genetic change in humans and

validation in cell and animal models can explain the mechanistic

cause of the phenotype. There are more than seven billion peo-

plemanifesting diverse phenotypes, which are skillfully identified

and characterized by physicians (Brenner, 2003). In conjunction

with traditional human genetics approaches, next-generation,

high-throughput, deep sequencing is a powerful tool to identify

genetic changes that are compatible with life and affect develop-

ment of the human brain.

It is relatively easy to detect and understand the functional

consequences of changes in protein-coding sequences, com-

pared to noncoding mutations. Mutations in a coding sequence
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often cause more severe phenotypes than mutations in a re-

gulatory element associated with the same coding sequence.

Nonsense mutations, as well as missense mutations, especially

in evolutionarily conserved amino acids (aa), can lead to gain or

loss of function of a protein. A coding sequence mutation can be

introduced intomodel organisms by overexpressing themutated

coding sequence or by knocking out, knocking down, or knock-

ing in the orthologous gene. The tissues, cell types, and subcel-

lular organelles in which a protein is expressed can suggest

potential roles of the protein. Knowledge of any interacting pro-

teins and of the aa sequence homology to other well-character-

ized proteins can also help identify the potential functions of a

protein.

In this regard, forkhead box protein p2 (FOXP2) provides a

prime example of protein-coding sequence mutations that iden-

tify genes with potential evolutionary importance. A mutation in

FOXP2 was first identified in a British family with a severe lan-

guage disorder (Lai et al., 2001). The affected individuals have

a severe impairment in the selection and sequencing of fine

oral and facial movements, the ability to break upwords into their

constituent phonemes, and the production and comprehension

of word inflections and syntax. Their non-verbal abilities are rela-

tively intact. FOXP2 encodes a forkhead-winged helix family

transcription factor that is highly expressed in the developing

and mature neocortex (Ferland et al., 2003), and the mutation

(R553H) disrupts the forkhead DNA-binding domain.

Comparison of the FOXP2 cDNAs from multiple species indi-

cates that the human FOXP2 protein differs at only three aa

residues from the mouse ortholog and at two residues from

the chimpanzee, gorilla, and rhesus macaque orthologs (Enard

et al., 2002). These aa changes are functionally critical as the hu-

man and chimpanzee FOXP2 have strikingly different transcrip-

tional targets, many of which are involved in CNS development

(Konopka et al., 2009). Human-specific FOXP2 targets also

include genes involved in branchial arch formation and craniofa-

cial development, which may be required for spoken language.

Mice carrying humanized FoxP2 show accelerated learning,

qualitatively different ultrasonic vocalizations, and increased

dendrite length and synaptic plasticity in the medium spiny neu-

rons of the striatum. These findings suggest that the cortico-

striatal circuitry mediates speech and language in humans

(Enard et al., 2009; Fujita et al., 2008; Schreiweis et al., 2014;

Shu et al., 2005). Although it is hard to know whether mouse ul-

trasonic vocalizations are analogous to human language, FoxP2

and cortico-striatal circuitry seem to control vocal learning in

songbirds, which communicate via vocalizations like humans

(Wohlgemuth et al., 2014). Perhaps surprisingly, Neanderthals,

Denisovans, and modern humans share an identical FOXP2 pro-

tein (Meyer et al., 2012; Noonan et al., 2006). Thus, at least some

neurobiological and physiological aspects of speech and lan-

guage probably emerged after divergence from chimpanzees.

FOXP2 is a part of a larger FOXP family that includes FOXP1,

FOXP3, and FOXP4. Their expression patterns are different, but

all FOXP transcription factors have a highly similar structure,

suggesting that they emerged by duplication. Conserved fork-

head domains are found in eukaryotic organisms from yeast to

humans, and the human genome contains more than forty FOX

genes that play diverse roles in development, metabolism, im-

munity, and cancer (Benayoun et al., 2011). Indeed, the majority
of human genes have been generated by gene duplication

(Ohno, 1970; Zhang, 2003). Duplicated genes diverge function-

ally over time by accumulating changes in the coding sequence

as well as in associated noncoding regulatory elements, which

alter protein expression patterns (Carroll et al., 2005; Conant

and Wolfe, 2008).

Analysis of the Slit-Robo Rho GTPase-activating protein 2

(SRGAP2) genes shows the potential role of gene duplication in

brain evolution (Charrier et al., 2012; Dennis et al., 2012).

SRGAP2 has been implicated in cerebral cortical development

in mice, especially in neuronal migration and morphogenesis,

and the F-BAR domain of SRGAP2 is required for its function

(Guerrier et al., 2009). Mice have only one form of the Srgap2

gene, but humans have four forms: one ancestral form

(SRGAP2A), which is orthologous to mouse Srgap2, and three

human-specific paralogs (SRGAP2B,SRGAP2C, andSRGAP2D)

that were produced by incomplete segmental duplication. Unlike

SRGAP2A,which consists of 1,071 aa, the 459-aa SRGAP2Band

SRGAP2C proteins have a truncated F-BAR domain. SRGAP2D

mRNA is subject to nonsense-mediated decay. The three hu-

man-specific paralogs are located in the human-lineage-specific

loci 1q21.1 and 1p12, both of which contain a number of genes

implicated in neurodevelopment (O’Bleness et al., 2012). The hu-

man-specific paralogs are also present in the Denisovan and

Neanderthal genomes, but not in the non-human primate ge-

nomes. Thus, the human-specific SRGAP2 paralogs emerged

when the genus Homo diverged from Australopithecus 2–3

million years ago (Dennis et al., 2012). SRGAP2B is expressed

as a pseudogene. With its truncated F-BAR domain, SRGAP2C

dimerizes with full-length SRGAP2A and inhibits SRGAP2A

function in a dominant-negative manner. Overexpression of

SRGAP2C in themouse brain results in sustained radial migration

of neurons as well as increased spine density and neoteny during

spine maturation, which are human-specific features of neuronal

development.

Genes controlling brain size or shape also exemplify evolution-

arily dynamic genomic regions identified by human genetics.

Primary microcephaly is an autosomal recessive neurodevelop-

mental disorder resulting in an abnormally small brain volume

of >2–3 SDs below themean, and some of the genes for this con-

dition have also been implicated as potentially active in human

brain evolution. Many of the known genetic mutations causing

human primary microcephaly target one subcellular organelle—

the centrosome (Gilmore and Walsh, 2013). Individuals with pri-

mary microcephaly show no obvious motor deficits but suffer

from intellectual disability and language delay. Microcephaly is

largely caused by mutations that disrupt genes encoding centro-

somal proteins: MCPH1, ASPM, CDK5RAP2, CENPJ, STIL,

WDR62, CEP152, and CEP63 (Bilgüvar et al., 2010; Bond et al.,

2002; Bond et al., 2005; Guernsey et al., 2010; Jackson et al.,

2002; Kumar et al., 2009; Nicholas et al., 2010; Sir et al., 2011;

Yu et al., 2010). Intriguingly, a few microcephaly-associated

genes, notably ASPM and CDK5RAP2, show evidence for po-

sitive selection not only in primates but also across placental

mammals. The evolution of ASPM and CDK5RAP2 is strongly

correlatedwith brain size, suggesting their roles in brain evolution

(Montgomery and Mundy, 2014).

As microcephaly proteins are ubiquitously present in the

centrosome of most animal cells (Nigg and Raff, 2009), it is
Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc. 425
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unclear why mutations in these genes affect the brain more than

the rest of the body in most cases. The centrosome is the main

microtubule-nucleating organelle during mitosis (M phase). It is

composed of two centrioles: an old, fully maturemother centriole

and a young, immature daughter centriole. The mother centriole

forms the basal body of the primary cilium during G1 phase. After

centriole duplication at G1/S, the cell contains two centrosomes,

each consisting of a mother centriole and a daughter centriole.

However, one of the centrosomes contains the oldest (‘‘grand-

mother’’) centriole in the cell, which was the mother centriole in

the previous cell cycle. This inherent asymmetry between the

mother and daughter centrioles and, by extension, between

the two centrosomes in a dividing cell, seems to be critical to

the maintenance of stem cell character (Wang et al., 2009; Ya-

mashita et al., 2007). During cell division, the grandmother

centriole and the ciliary membrane linked to this centriole are

preferentially inherited by the daughter cell that is destined to

remain a neural stem or apical radial glial cell (Paridaen et al.,

2013; Taverna et al., 2014). Thus, in the absence of a micro-

cephaly protein, human neural progenitors may fail to asymmet-

rically inherit the ciliary membrane or grandmother centriole,

thereby losing stem cell character prematurely.

The centrosome-associated cell division machinery contains

at least three more proteins that carry modern human-specific

aa substitutions. Cancer susceptibility candidate 5 (CASC5), ki-

nesin family member 18A (KIF18A), and sperm-associated anti-

gen 5 (SPAG5) localize to the mitotic spindle, which is organized

by the centrosome, or to the kinetochore, which attaches chro-

mosomes to the spindle microtubules (Pääbo, 2014; Prüfer

et al., 2014). The three proteins are expressed in the germinal

zones during mid-fetal brain development. These data suggest

that the centrosome-associated cell division machinery may be

critical to neocortical evolution.

Another crucial neurodevelopmental gene, AHI1, has under-

gone evolutionary changes along the human lineage (Ferland

et al., 2004). Mutations in AHI1 cause Joubert syndrome, a

congenital brainmalformation of the cerebellar vermis and brain-

stem. Individuals with Joubert syndrome have motor and behav-

ioral abnormalities, including an inability to walk due to severe

clumsiness and ‘‘mirror’’ movements, and cognitive and behav-

ioral disturbances. In particular, the human and non-human

primate aa sequences of the N-terminal coiled-coil domain of

AHI1 are highly divergent—and this domain is totally missing in

mice and rats—suggesting that AHI1 may play a crucial, hu-

man-specific role during neurodevelopment. Overall, the studies

of changes in protein-coding sequences have highlighted some

interesting leads.

Noncoding DNA and Human Brain Evolution
Even before the completion of the human genome project, it was

anticipated that protein-coding sequences alone could not fully

explain the human-specific aspects of our anatomy and physi-

ology. Human and chimpanzee proteins were already known to

be so similar that other regulatory mechanisms would presum-

ably be required to account for the biological differences be-

tween these species (King andWilson, 1975). Indeed, the human

genome project has made it clear that nearly 99% of the human

genome does not encode proteins and that the approximately

21,000 human protein-coding genes are in general surprisingly
426 Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc.
similar across placental mammals (Lander, 2011; Lander et al.,

2001; Venter et al., 2001).

Although the actual number of protein-coding genes in hu-

mans is much smaller than initial estimates of approximately

100,000 genes, alternative splicing has been recognized as an

important source of variation, potentially producing multiple

different functional mRNAs and proteins with diverse expression

patterns from the same gene (Keren et al., 2010; Nilsen and

Graveley, 2010). The synapse provides ample examples of alter-

native splicing events that diversify its components. Clustered

protocadherins are perhaps the most complex synapse-spe-

cificity and circuit-assembly molecules that are alternatively

spliced (Zipursky and Sanes, 2010). With numerous alternative

exons for multiple protein domains, there are approximately

350,000 possible, combinatorial protocadherin proteins from

about 60 Pcdh loci.

Neurexins, a highly polymorphic family of synaptic receptors,

exhibit distinct isoform-specific biochemical interactions and

synapse assembly functions. The KH-domain RNA-binding

protein SAM68 alternatively splices the Nrxn1 gene in an activ-

ity-dependent manner, thereby dynamically controlling Nrxn1

molecular diversity in the CNS (Iijima et al., 2011). In fact, a few

critical splicing factors in the nervous system have been re-

ported, such as NOVA, FMRP, RBFOX, and most recently,

nSR100/SRRM4 (Brown et al., 2001; Gehman et al., 2011; Irimia

et al., 2014; Jensen et al., 2000). nSR100 controls alternative

splicing of 3–15 nucleotide ‘‘microexons,’’ which in turn alters

protein-protein interactions, during neurogenesis. Reduced

levels of nSR100 and dysregulated neuronal microexons are

implicated in some cases of autism (Irimia et al., 2014). RBFOX

targets are also frequently dysregulated in autism, highlighting

the critical role of alternative splicing in brain development and

function (De Rubeis et al., 2014; Voineagu et al., 2011; Weyn-

Vanhentenryck et al., 2014).

In addition to alternative splicing, almost half of the known pro-

tein-coding genes in humans utilize alternative promoters. Each

promoter is regulated by a distinct set of transcription factors,

which drive diverse spatial and temporal expression patterns

(Davuluri et al., 2008). For example, the human brain-derived

neurotrophic factor (BDNF) gene has nine promoters that are

used in specific tissues and brain regions (Pruunsild et al.,

2007). Aberrant use of a promoter is associated with various dis-

eases. A polymorphism in the promoter region of the human

serotonin transporter gene SLC6A4 has also been associated

with several dimensions of neurosis and psychopathology (Hariri

et al., 2002).

G protein-coupled receptor 56 (GPR56) demonstrates how

noncoding elements and alternative promoters can control key

features of cerebral cortical development. GPR56 encodes a G

protein-coupled receptor that binds extracellular matrix ligands

and regulates normal neocortical development (Jeong et al.,

2013; Singer et al., 2013). Mutations in the coding sequences

cause polymicrogyria (‘‘too many small gyri’’) in most of the

neocortex (Piao et al., 2004). Recently, polymicrogyria restricted

to the neocortical areas surrounding the Sylvian fissure including

Broca’s area, the primary language area, was identified (Bae

et al., 2014). The causative mutation is found in theGPR56 locus

but disrupts a noncoding element, which constitutes a strong

neural promoter during development, in the 50-upstream
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Figure 1. Emergence and Evolution of a Gene
(A) GPR56 exemplifies how a novel gene arises and evolves. GPR56 is critical to neocortical development, especially gyral patterning. Its protein-coding
sequence arose when vertebrates and invertebrates diverged, probably by gene duplication of a preexisting adhesion G protein-coupled receptor (GPCR) with a
long N-terminal extracellular domain. When placental and non-placental mammals diverged, the number of noncoding elements was dramatically increased. The
majority of the novel noncoding elementswere derived from transposable elements. The placentalGpr56 gene obtained a critical noncoding element (red triangle)
that constitutes a robust neural promoter, which drives regional expression in the neocortex. GPR56 continued to obtain new noncoding elements, alternative
promoters, and untranslated exons in the primate lineage. Numerous transposon-derived noncoding elements are all over the humanGPR56 gene. Most of them
are likely to be evolutionarily recent, since the older insertions become mutated and unrecognizable. SINE, short interspersed nuclear elements; LINE, long
interspersed nuclear elements; LTR, long terminal repeat elements; DNA, DNA repeat elements; Simple, simple repeats or micro-satellites.
(B) Multiple alternative promoters of human GPR56 collectively drive gene expression in the entire neocortex (colored in blue). Loss of a specific noncoding
element, which corresponds to the red triangle in (A), and thus loss of the associated promoter, ablate GPR56 expression and cause neocortical malformation in
the areas surrounding the Sylvian fissure bilaterally (i.e., perisylvian polymicrogyria). The affected areas include Broca’s area, the primary language area for
speech. Presumably, the novel noncoding elements enabled more precise and complex neocortical patterning mediated by GPR56. Adapted from Bae et al.,
2014.
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regulatory region of GPR56. It turned out that the human GPR56

has at least 17 alternative promoters, whereas mouseGpr56 has

only a handful (Figure 1). Intriguingly, the human noncoding

element directs gene expression in a highly restricted pattern,

whereas the mouse element directs more diffuse expression.

These data suggest that diversification of noncoding elements

and promoters results in region-specific gene expression in the

cortex, thus allowing independent development and functional

specialization of distinct neocortical regions.

Noncoding regions in the human genome have numerous

transposable elements, highly repetitive DNA, introns, and pseu-

dogenes, as well as RNA genes. What proportion of noncoding

DNA is functional is an open question, which deserves a sub-

stantial amount of careful study (Doolittle, 2013; ENCODE Proj-

ect Consortium, 2012; Palazzo and Gregory, 2014). Obviously,

not all DNA in the human genome can be functional. The human

genome (comprising three billion bp) contains roughly eight

times as much DNA as that of the pufferfish Fugu rubripes (0.4

billion bp) but is about one-fortieth the size of the genome of

the lungfish Protopterus aethiopicus (140 billion bp) (http://

www.genomesize.com) (Palazzo and Gregory, 2014). Therefore,

the relationship between genome size and the complexity of the

organism is not a straightforward one.

Transposable elements are the most prevalent type of non-

coding DNA, accounting for approximately 45% of the human

genome. Long interspersed nuclear element-1 (LINE1) retro-

transposons are autonomous transposable elements that can

retrotranspose a copy of their own RNA, as well as other
RNAs, such as short interspersed nuclear elements (SINEs),

and cellular mRNAs. Most transposable elements are inactive

due to mutations, but LINE1 is still active and has been impli-

cated in dozens of diseases (Hancks andKazazian, 2012). Trans-

posable elements clearly have been active over evolutionary

time to introduce innovations to the genome during evolution.

Many conserved noncoding elements were derived from trans-

posable elements. Comparison of placental and marsupial ge-

nomes demonstrates that the number of conserved noncoding

elements is sharply increased in the genome of placental mam-

mals (Lindblad-Toh et al., 2011; Mikkelsen et al., 2007). Over

the course of evolution, transposable elements provide novel

binding sites for the host transcriptional machinery and thus

help create novel regulatory networks (Davidson, 2010; Wray,

2007). For example, many of the complex alternative promoters

and exons of humanGPR56were derived from LINEs and SINEs

(Bae et al., 2014).

The concept that changes in noncoding sequence generated

evolutionary changes has been strongly supported by increas-

ingly systematic studies of regulatory elements that control

nervous system expression. Active regulatory elements are usu-

ally associated with p300/CBP and epigenetically marked

by H3K27ac. Thus, p300/CBP chromatin immunoprecipitation

sequencing followed by lacZ reporter mouse transgenesis can

systematically reveal enhancers active in the telencephalon

(http://enhancer.lbl.gov). This approach identified numerous po-

tential embryonic forebrain enhancers that are evolutionarily

conserved or divergent between mice and humans. At least
Developmental Cell 32, February 23, 2015 ª2015 Elsevier Inc. 427
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Table 2. Resources for Neurogenetics

Name Contents Link

SFARI Gene a database of genes implicated in autism http://sfari.org/resources/sfari-gene

SchizophreniaGene a database of genes implicated in schizophrenia http://www.szgene.org

Allen Brain Atlas a comprehensive database of gene expression patterns and connectivity

maps in the brains of humans, non-human primates, and mice during

development and in adulthood

http://www.brain-map.org,

http://www.brainspan.org

Human Brain

Transcriptome

a database of spatio-temporal gene expression patterns in the developing

and adult human brain

http://hbatlas.org

VISTA Enhancer

Browser

a resource for experimentally validated human and mouse noncoding

fragments with gene enhancer activity as assessed in transgenic mice

http://enhancer.lbl.gov

ENCODE a comprehensive database of potentially functional elements in the human

genome: unannotated exons, regulatory elements, RNA genes, etc.

https://www.encodeproject.org

UCSC Genome

Browser

a user-friendly gateway to a large collection of genomes, gene expression,

regulation, variation, and evolution

http://genome.ucsc.edu

Ensembl a user-friendly gateway to a large collection of genomes, gene expression,

regulation, variation, and evolution

http://www.ensembl.org

CEEHRC Platform a database of epigenome http://www.epigenomes.ca

Multiple online resources provide information on genomes, epigenomes, brain transcriptomes, brain connectivity maps, and genes implicated in

autism and schizophrenia.
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one-third of human brain candidate enhancers are unique to hu-

mans and not functionally conserved in mice, suggesting that a

significant portion of human brain enhancers emerged after the

divergence of primates and rodents (Visel et al., 2013) and that

changes in enhancer elements represent a dynamic evolutionary

mechanism.

Recently, the importance of noncoding RNAs in brain deve-

lopment, evolution, and disease has been gradually appreciated

(Esteller, 2011; Qureshi and Mehler, 2012; Sauvageau et al.,

2013). For example, there are more than 100 primate-specific

and 20 human-specific microRNAs that are expressed in the

developing brain (Berezikov, 2011). The primate-specific micro-

RNAs target cell-cycle and neurogenesis regulators, thereby

increasing proliferation of neocortical progenitors. Primate-spe-

cific co-evolution of microRNAs and their targets in the germinal

zones may have contributed to neocortical expansion in pri-

mates (Arcila et al., 2014).

Transcriptomic Analyses Reveal How the Human Brain
Develops and Evolves
Changes in the noncoding genome are reflected in differences in

levels or patterns of transcription, and our understanding of the

architecture of gene transcription has advanced considerably

in the last few years. RNA-seq of prenatal and postnatal brains

in health and disease has provided an enormous wealth of

data on gene expression (Table 2) (Hawrylycz et al., 2012; John-

son et al., 2009; Kang et al., 2011; Lein and Hawrylycz, 2014;

Miller et al., 2014; Pletikos et al., 2014; Zeng et al., 2012). The hu-

man brain expresses numerous genes; approximately 80%–

95% of protein-coding genes are expressed in at least one brain

region during at least one period of development or adulthood.

Co-expressed genes suggest anatomical structures, cell types,

and molecular pathways that are potentially critical to brain

development and function. Comparison of brain RNA-seq from

different species reveals evolutionarily conserved and divergent

gene expression patterns.
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The adult human neocortex has multiple distinct functional

areas, such as the visual area in the occipital lobe, the auditory

area in the temporal lobe, and Broca’s language area in the left

frontal lobe. Surprisingly, it turned out that transcription profiles

in the adult neocortex are relatively homogeneous throughout

the cortex, although a certain level of heterogeneity still does

exist (Hawrylycz et al., 2012; Kang et al., 2011; Pletikos et al.,

2014), suggesting that the distinct function of each neocortical

area becomes apparent only at a higher level of complexity

beyond gene expression. Comparison of the adult human and

non-human primate brain transcriptomes shows that primates

share common, closely matched gene expression patterns in

the neocortex, while the human frontal lobe is transcriptionally

more complex (Bernard et al., 2012; Konopka et al., 2012;

Pletikos et al., 2014). In contrast, the mouse neocortex trans-

criptome is markedly different from the primate transcriptome.

For example, the synaptic vesicle protein 2c (SV2C) gene is ex-

pressed preferentially in layer 3 pyramidal neurons in primates

but is expressed in layer 5 pyramidal neurons inmice. The prody-

norphin (PDYN) gene, which encodes dynorphin and other kappa

opioid receptor peptide agonists, is expressed in layers 4 and 5 in

primary visual cortex in primates but is expressed only in scat-

tered GABAergic interneurons in mice (Bernard et al., 2012).

The transcriptome of the developing, prenatal human neo-

cortex, however, is quite heterogeneous across different cortical

areas (Johnson et al., 2009; Kang et al., 2011; Miller et al., 2014).

First, transcriptional differences are found between different

neocortical areas (e.g., orbital/dorsolateral/ventrolateral/medial

prefrontal, motor-somatosensory, parietal association, temporal

auditory, temporal association, and occipital visual neocortex).

Each area expresses a large number of specific gene expression

and alternative splicing patterns, often with a rostrocaudal, me-

diolateral, or frontotemporal gradient. For example, cerebellin 2

precursor (CBLN2) is enriched in the prefrontal cortex, neuro-

peptide Y (NPY) in non-frontal areas, and FOXP2 in the perisyl-

vian cortex; the full-length isoform ROBO1a is enriched in the

http://sfari.org/resources/sfari-gene
http://www.szgene.org
http://www.brain-map.org
http://www.brainspan.org
http://hbatlas.org
http://enhancer.lbl.gov
https://www.encodeproject.org
http://genome.ucsc.edu
http://www.ensembl.org
http://www.epigenomes.ca
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temporal lobe, whereas the alternative short isoform ROBO1b is

slightly enriched in the prefrontal cortex. Regionally enriched

transcriptomes form a co-expression network; for example, the

developing prefrontal cortex has a distinct gene network that

contains a number of schizophrenia genes (Gulsuner et al.,

2013). Differentially expressed genes are more frequently asso-

ciated with human-specific evolution of putative cis-regulatory

elements (Johnson et al., 2009).

Transcriptional differences in the prenatal human are also pro-

nounced in different germinal and postmitotic layers. Laminar

transcriptomic signatures are likely to reflect the cellular diversity

and developmental processes of the prenatal human neocortex.

Excitatory neurons, which constitute the majority of neocortical

neurons, are derived from neocortical progenitors called radial

glial (RG) cells in a germinal zone called the ventricular zone

(VZ) (Ayoub et al., 2011; Fietz et al., 2012). RG cells and the VZ

are common to all mammals and express cell proliferation genes

(e.g., SOX2, PAX6, ASPM), with human RG cells showing a num-

ber of species-specific signaling pathways such as platelet

derive growth factor D (PDGFD) signaling (Lui et al., 2014). On

the other hand, differentiated, postmitotic neurons express

distinct neuronal genes (e.g., LMO4, FOXP1, CUX1). Remark-

ably, humans, non-human primates, and placental mammals

with an enlarged brain have an additional, expanded germinal

zone called the outer subventricular zone (OSVZ), where a

unique population of neocortical progenitors called outer or

basal RG cells are abundant (Betizeau et al., 2013; Fietz et al.,

2010; Hansen et al., 2010; Lui et al., 2011; Reillo et al., 2011;

Smart et al., 2002). However, theOSVZ showsminimal transcrip-

tional differences from the inner subventricular zone (Miller et al.,

2014), which awaits more sophisticated investigations, prefer-

ably based on single-cell transcriptomes, because individual dif-

ferences of neocortical progenitors may be obscured by pooled

population means.

In this regard, there are a couple of debates on progenitors

and the OSVZ in the neocortical development field. The first

debate is on how neocortical progenitors generate postmitotic

neurons diverse in shape, size, connectivity, and electrophysio-

logical and molecular properties. One theory is that a common

kind of progenitor sequentially generates all subtypes of neu-

rons, with progressive restriction of progenitor fate potential

(Guo et al., 2013). The other theory is that lineage-restricted or

distinct subtypes of progenitors co-exist and are pre-specified

to generate different subtypes of neurons (Franco et al., 2012).

As both theories were mainly explored in mice, other animals

with an enlarged and gyrencephalic neocortex should be exam-

ined rigorously and carefully to resolve this debate. The second

debate is on what roles outer RG cells in the OSVZ have played

for neocortical expansion in carnivores and primates during evo-

lution. Outer RG cells show unique morphology and cellular

movements and are abundant in primates and carnivores, while

they are virtually absent in mice. As neocortical expansion

strongly correlates with gyrification (Tallinen et al., 2014), poten-

tial roles of outer RG cells in gyrification and expansion were

explored. Examination of multiple mammals revealed that outer

RG cells are also present in the Amazonian agouti, a gyrence-

phalic rodent, and the marmoset, a lissencephalic primate (Gar-

cı́a-Moreno et al., 2012; Kelava et al., 2012). Thus, whereas the

mere presence of outer RG cells alone cannot explain gyrifica-
tion, they are nonetheless in a key context to potentially regulate

gyral patterns. Perhaps specific ablation of outer RG cells in an-

imal models other than mice or examination of outer RG cells in

microcephalic brains during development may resolve this

debate.

Human-specific transcriptomic analyses and the above-

mentioned debates raise questions about the widespread use

of mice as proxies for humans in research on neocortical devel-

opment and function and in psychiatric drug development. The

features that are conserved between mice and humans are, no

doubt, of paramount importance, and thus will continue to be

studied. However, there are a few evolutionarily novel features

unique to the developing human or primate neocortex, such as

precursor neurons migrating into the cortical primordium from

the subpallium even before local neurogenesis in the VZ, von

Economo neurons located in layer 5 of the anterior cingulate

and frontoinsular cortex, and so on (Clowry et al., 2010; Gesch-

wind and Rakic, 2013; Radonji�c et al., 2014). Hence, the precise

introduction of mutations that cause severe human neocortical

phenotypes into the mouse genome often leads to negligible

phenotypes in the mouse. Alternatively, larger animal models,

such as the ferret, a gyrencephalic carnivore, and the marmoset

(Fietz et al., 2010; Garcı́a-Moreno et al., 2012; Kelava et al.,

2012), or 3D culture of human neural stem cell-derived cerebral

organoids or mini-brains (Bae and Walsh, 2013; Lancaster

et al., 2013; Stein et al., 2014) may provide new insights into hu-

man neocortical development and evolution. Regardless,

caution must be taken against quick extrapolation of results

from ferrets, inbred mice, or cell culture systems to human

neocortical development per se. Both human fetal brain tissues

and animal/cell models need to be studied in parallel.

The Dynamic Genome of the Single Neuron
Somatic mutations, which arise during the cell divisions that

generate the embryo, have recently been implicated in several

important neurological diseases. Somatic mutations that were

identified in human hemimegalencephaly (HMG) revealed the

dysregulated phosphoinositide 3-kinase (PI3K)-AKT3-mTOR

pathway as the causative mechanism (Lee et al., 2012; Poduri

et al., 2012; Rivière et al., 2012). HMG patients suffer from intrac-

table epilepsy, which can be controlled only by surgical resection

of the affected brain tissue. Prior to the discovery of somatic mu-

tations in the PI3K-AKT3-mTOR pathway in HMG, the genetic

etiology of HMG was poorly understood, although there had

been rare cases of HMG associated with the overgrowth syn-

dromes tuberous sclerosis complex (TSC) (Cartwright et al.,

2005) and Proteus syndrome (Griffiths et al., 1994). Direct study

of resected tissue led to the identification of a recurrent AKT3

mutation (E17K) in HMG. AKT3 is a RAC-gamma serine/threo-

nine protein kinase that is highly expressed in the developing

neocortex, and the E17K mutation renders AKT3 constitutively

active (Lee et al., 2012; Poduri et al., 2012). Additional somatic

mutations causing HMG have been identified that implicate

key upstream and downstream components of this pathway,

namely PI3K and mTOR (Lee et al., 2012; Rivière et al., 2012).

These results are consistent with previous reports that HMG

is occasionally seen in patients with TSC. TSC is caused by

mutations in TSC1 and TSC2, which encode members of the

mTOR pathway. Surprisingly, levels of mosaicism as low as
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8% are sufficient to disrupt the normal architecture and function

of the neocortex in HMG (Evrony et al., 2012; Lee et al., 2012; Po-

duri et al., 2012; Rivière et al., 2012).

Given the difficulty of detecting somatic mosaic mutations by

standard methods such as Sanger sequencing or even whole-

exome sequencing, it is not known how common a cause of

complex neurogenetic disease they are. A recent study of brain

malformations used ‘‘deep sequencing’’ of candidate genes to

an average read depth of more than 200 to identify mutations

that might be present in a small proportion of cells. Analysis of

leukocyte-derived DNA samples from 158 persons with brain

malformations identified somatic mosaicism that had been diffi-

cult to detect previously. This study revealed that such somatic

mutations represented more than a quarter of all identified muta-

tions and were often missed both by Sanger sequencing and by

some whole-exome sequencing with typical calling algorithms.

Substantial disability in the form of epilepsy and intellectual

disability could be caused by mutations present in as few as

10% of brain cells. Presumably, these mutations occurred in

the early post-zygotic stages before neurogenesis. This report

suggests that high-coverage sequencing panels provide an

important complement towhole-exome and genome sequencing

in the evaluation of somaticmutations in the human brain (Jamuar

et al., 2014).

While low levels of somatic mosaicism are clinically important,

they are also difficult to detect. Typical whole-genome se-

quencing or Sanger sequencing of pooled DNA from many cells

covers each base in the genome 50–60 times; at this level of

coverage, it is possible to dismiss low levels of true somatic

mosaicism as errors (false-negative results). One way to solve

this problem is to amplify and sequence the genomes of individ-

ual cells. Single-cell sequencing has already been used to eval-

uate the clonal evolution of tumors (Hou et al., 2012; Navin

et al., 2011; Xu et al., 2012) and the spontaneous mutation of

spermcells (Lu et al., 2012;Wang et al., 2012). In the humanbrain,

single-cell sequencing has been successfully used to detect so-

matic mosaicism in HMG and to evaluate the rate of somatic

LINE1 retrotransposition (Evrony et al., 2012). Single-cell

sequencing has also been used to measure the prevalence of

large copy number variants in the brain (McConnell et al., 2013;

Cai et al., 2014). Less than one unique insertion was detected

per neuron, suggesting that LINE1 retrotransposition is not a ma-

jor generator of neuronal diversity in the brain. Interestingly, sin-

gle-cell sequencing can repurpose the LINE1 retrotransposition

events for cell lineage analysis in the developing human brain

(Evrony et al., 2015).

One caveat of single-cell sequencing is that somaticmutations

that occurred during or after neurogenesis can be identified only

in surgically resected or postmortem brain tissues. Noninvasive

identification of somatic mosaicism limited to the brain is impos-

sible. Nonetheless, the optimization of single-cell and high depth

sequencing will allow us to address the role of somatic mosai-

cism in brain disorders, in cases where mosaic mutations are

detectable in a small proportion of accessible cells, such as leu-

kocytes and skin fibroblasts (Poduri et al., 2013).

Neurogenetics is Just the Beginning
Though the human brain is extremely complex, the proportion of

genes that govern its development, and for which we have tenta-
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tively assigned functions, grows inexorably. Functional studies

of human neurogenetic mutations are obviously challenging,

due to the fact that the human brain has evolved dramatically

in the last 2–3 million years, gaining novel circuits, cell types,

and signaling pathways that are rare or absent in animal models

(Geschwind and Rakic, 2013; Molnár et al., 2014; Pääbo, 2014).

Nonetheless, by identifying critical neural genes and studying

their functions in diverse model organisms using innovative

tools, Homo sapiens keeps marching on in the endeavor to un-

derstand its brain. Perhaps the process rather than the product

of this endeavor may help define who we are.
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